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Abstract

An implementation of the Asymptotic Waveform Evaluation (AWE) technique is

presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily

shaped three dimensional perfect electric conductor(PEC) bodies. An Electric Field Integral

Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The

electric current, thus obtained is expanded in a Taylor series around the frequency of interest. The

coefficients of the Taylor series (called “moments”) are obtained using the frequency derivatives

of the EFIE. Using the moments, the electric current on the PEC body is obtained over a

frequency band. Using the electric current at differenct frequencies, RCS of the PEC body is

obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere

are presented over a bandwidth. A good agreement between AWE and the exact solution over the

bandwidth is observed.
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1. Introduction

The Method of Moments (MoM) using the Electric Field Integral Equation (EFIE) has

been a very useful tool for accurately predicting the Radar Cross Section (RCS) of arbitrarily

shaped three dimensional PEC objects [1]. Implementation of MoM for EFIE involves solving for

electric current using the vector and scalar potential solutions which satisfy the boundary

condition that the tangential electric field at the boundary of the PEC body is zero. This is done by

using Galerkin’s technique and forming simultaneous equations. In a subdomain technique, the

PEC body is divided into subdomains such as triangles, rectangles or quadrilaterals. The

simultaneous equations are generated over the subdomains and added together to form a global

matrix equation. This results in a dense, complex matrix, which can be solved either by a direct

solver using LU decomposition or by an iterative solver using either conjugate gradient method or

biconjugate gradient method. Generation of the matrix equation and its solution are the two major

computationally intensive operations in MoM.

To obtain the frequency response of RCS using MoM, one has to repeat the calculations at

every frequency over the frequency band of interest. If the RCS is highly frequency dependent,

one needs to do the calculations at the finer increments of frequency to get an accurate

representation of the frequency response. This can be computationally intensive and for

electrically large objects it can be computationally prohibitive despite the increased power of the

present generation of computers. To alleviate the above problems, the Asymptotic Waveform

Evaluation (AWE) technique has been proposed. Applied to timing analysis of very large scale

integrated (VLSI) circuits intially [2,3], it is finding increasing interest in electromagnetic

analysis of microwave circuits [4,5]. Recently, a detailed description of AWE applied to
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frequency domain electromagnetic analysis is presented in [6].

In this work, we describe the application of AWE for predicting RCS of the

three dimensional PEC objects over a wide band of frequencies using the Method of Moments. In

the AWE technique, the electric current is expanded in a Taylor series around a frequency. The

coefficients of the Taylor series (called ‘moments’, not to be confused with moments in Method of

Moments) are evaluated using the frequency derivatives of the EFIE. Once the moments are

obtained, the electric current distribution on the PEC body can be obtained at any frequency

within the bandwidth. Using this current distribution, the RCS  is obtained.

The rest of the report is organized as described below. For the sake of completeness, in

section 2, the MoM formulation of the EFIE is described briefly. In section 3, AWE

implementation for the EFIE is described in detail. The frequency derivatives of EFIE are

obtained and presented. Numerical results for a square plate, cube, and  sphere are presented in

section 4. The numerical data are compared with the exact solution over the bandwidth. CPU time

and storage requirements for AWE formulation are given for each example and are compared

with those required for exact solution at each frequency. Concluding remarks on the advantages

and disadvantages of the AWE technique are presented in section 5.

2. MoM Implementation of EFIE

Consider an arbitrarily shaped PEC body shown in figure 1. For RCS calculations, a plane

wave is assumed to be incident at an angle . At the surface of the PEC body, the total

tangential electric field is zero. Writing the total tangential electric field in terms of the scattered

θi φi,( )
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field and the incident field

(1)

The scattered electric field in terms of the equivalent electric current distribution on the PEC body

is given by[7]

(2)

and the incident electric field is given by

(3)

where

(4)

and

(5)

(6)

(7)

(8)

(9)
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(11)
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 is the observation point.  indicates the del operation with respect to the source

coordinate system.  is the polarization angle [8]. The surface integral in equation (2) is

evaluated over the surface of the PEC body.

In a subdomain MoM, the PEC surface is divided into subdomains such as triangles,

rectangles and quadrilaterals. In this report we follow the triangular subdomain approach reported

in [9]. The sample discretization of a square plate and a sphere with triangular subdomains are

shown in figure 2. The electric current is expanded in rooftop basis functions over each triangle.

(12)

A is the area of the triangle and the other parameters with respect to a triangle are shown in

figure 3.

Equations (2) and (3) are substituted in equation (1), and following Galerkin’s technique,

equation (1) is mutiplied by a vector testing function and integrated over the surface of a

triangle [9].
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where

(14)

(15)

 is the total number of triangles. Superscript(jt) is used to indicate the triangle containing the

observation and superscript(it) is used to indicate the triangle containing the source point. The

contributions from all the triangles over the surface are added to form a global matrix equation

(16)

where

mt=1,2,3;  it=1,2,3, .... Ne (17)

and

m=1,2,3;  it=1,2,3, .... Ne (18)

In equation (17),  is a complex, dense square matrix.  is the excitation vector and

 is the vector with unknown current coefficients.

Jnt
jt( ) lnt

jt( )

2A
jt( )--------------- r r nt

jt( )
– 

 
=

Tmt
it( ) lmt

it( )

2A
it( )--------------- r r mt

it( )
– 

 
=

Ne

Z k( ) I k( ) V k( )=

Z k( )
jkηo

4π
----------- Tmt

it( )
Jnt

jt( )

jt
∫∫• jkR–( )exp

R
---------------------------- s'd sd

it
∫∫




nt 1=

3

∑
jt 1=

Ne

∑=

jηo

4πk
--------- Tmt

it( )∇• 
  ′∇ Jnt

jt( )• 
  jkR–( )exp

R
---------------------------- s'd s} ]d

jt
∫∫

it
∫∫–

V k( ) Tmt
it( )

Einc• sd
it
∫∫=

Z k( ) V k( )

I k( )



11

Equation (16) is solved at any specific frequency (with wavenumber ) either by a

direct method using LU decomposition or by an iterative method using either conjugate gradient

method or biconjugate gradient method. The advantage of direct method is that for multiple

incident angles, the  matrix has to be decomposed only once and for each incident angle

the forward/backward substitutions are performed which are computationally less intensive.

The solution of equation (16) gives the unknown current coefficients  which are

substituted in equation (12) to obtain the electric current distribution over all the triangles. Once

the electric current distribution is known, the scattered electric far field is computed as [7]

(19)

where  are the spherical coordinates of the observation point. The radar cross section is

given by

(20)

The radar cross section given in equation (20) is calculated for at one frequency. Given the proper

sampling size of the discretization, this calculation is widely accepted in the RCS community as

“exact” solution. If one needs RCS frequency response, this calculation is to be repeated at

different frequency values.
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3. AWE Implementation

The general implementation of AWE for any frequency domain technique used for

electromagnetic analysis is given in detail in [6].  As shown in the previous section, the solution

of equation (16) gives the unknown current coefficient vector  at a particular frequency .

Instead  can be expanded in Taylor series as

(21)

with the moments  given by [6]

(22)

 is theqth derivative with respect tok of Z(k) given in equation (17) and evaluated at

. Similarly,  is thenth derivative with respect tok, of V(k) given in equation (18) and

evaluated at . The Kronecker delta  is defined as

(23)

The evaluation of  is a lengthy process, due to the presence of  in the second

term of equation (17). The derivatives can be obtained by successively diffrentiating the previous
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(24)

where  the binomial coefficient, q non-negetive integer and .

On the right hand side of equation (17), the derivatives of the two terms can be obtained

by setting
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in the first term and
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mt=1,2,3;  it=1,2,3, .... Ne (25)

where the permutation functionP(q,p) is defined as [11]

(26)

The expression for  is given by

                                                                                   mt=1,2,3;  it=1,2,3, .... Ne (27)

where ,  and .

Substituting equations (25) and (27) in equation (22), the moments of AWE are obtained.
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4. Numerical Results

To validate the analysis presented in the previous sections, a few numerical examples are

considered. RCS frequency response calculations are done for a square plate, a cube, and a

Z
q( )

ko( )
jkηo

4π
----------- Tmt

it( )
Jnt

jt( )
jR–( ) q

1 q
jkoR
-----------– 

 
jt
∫∫• jkR–( )exp

R
---------------------------- s'd sd

it
∫∫




nt 1=

3

∑
jt 1=

Ne

∑=

jηo

4πk
--------- Tmt

it( )∇• 
  ′∇ Jnt

jt( )• 
 

jR–( ) q P q p,( )

jkoR( ) p
--------------------

p 0=

q

∑
 
 
  jkR–( )exp

R
---------------------------- s'd s} ]d

jt
∫∫

it
∫∫–

P q p,( ) q!
q p–( ) !

--------------------=

V
n( )

ko( )

V
n( )

ko( ) j( ) n
Tmt

it( )
Ei X1 Y1 Z1+ +( ) n

jko X1 Y1 Z1+ +( )( )exp• sd∫∫=

X1 x θi φicossin= Y1 y θi φisinsin= Z1 z θicos=



15

sphere. The numerical data obtained using AWE are compared with the results calculated at each

frequency using the triangular patch Method of Moments. We will refer to the later method as

“exact solution.” All the computations reported below are done on a CONVEX C-220 computer.

(a) Square Plate:

First example is a square plate ( , figure 4(a)) with the incident electric field at

 and . The incident field is E-polarized ( ). The RCS frequency

response is calculated with 12 GHz as the expansion frequency. The AWE moments are

calculated at 12 GHz and are used in the Taylor series expansion. The frequency response from

9 GHz to 15 GHz is plotted in Figure 4(b) along with the exact solution calculated at different

frequencies. A very good agreement can be seen between the AWE frequency response and the

exact solution over the bandwidth. The frequency response is calculated using 8th order AWE.

The frequency response calculation using 5th order AWE is also plotted in figure 4. For 307

unknowns, exact solution took around 262 seconds CPU time to fill the matrix and 1.6  seconds

CPU time to LU factor the matrix at each frequency. AWE frequency response calculation took

1187 seconds CPU time to fill the matrices including the frequency derivative matrices and

1.6 seconds CPU time to LU factor the matrix. The exact solution was carried out at

7 frequencies, whereas, with AWE the frequency response is calculated at frequency increments

of 0.1 GHz. There is a substantial amount of savings in CPU time by using AWE, when RCS

frequency response is required with fine frequency increments.

Another example of RCS frequency response of the square plate is considered in the

frequency range 25 GHz to 35 GHz. The square plate is discretized with 603 unknowns. The

1cm 1cm×

θi 90
o

= φi 0
o

= α 90
o

=
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AWE frequency response is calculated using 8th order Taylor series expansion. The RCS

frequency response with a E-polarized ( ) incident wave at  and  is

plotted from 25 GHz to 35 GHz in figure 5. The frequency response calculation using 6th order

AWE is also plotted in figure 5. All the moments of AWE are calculated at 30 GHz. It can be seen

from figure 5 that AWE frequency response agrees well with the eaxct solution at each frequency.

AWE frequency response is calculated at 0.1 GHz increments. AWE took 4470 seconds CPU time

to fill the matrices, including the derivative matrices, whereas exact solution took 909 seconds for

matrix fill at each frequency (i.e., 9090 seconds for 10 frequencies). The LU factorization took

12.4 seconds CPU time for AWE, whereas it took 12.5 seconds CPU time for exact solution at

each frequency calculation (125 seconds for 10 frequencies).

(b) Cube

RCS frequency response of a cube ( , fig. 6(a)) is computed using AWE

for normal incidence. The frequency response is calculated with 11 GHz as the expansion

frequency and plotted in figure 6(b) over the frequency band 8 GHz to 14 GHz. The results are

plotted both for 4th order AWE and 8th order AWE. AWE frequency response is calculated with

0.1 GHz frequency increment. The cube is discretized with 348 triangular patches resulting in 522

unknowns. A good agreement between the AWE results and the exact solution can be seen. Even

the 4th order AWE gave accurate results except in the end of the band region. The 4th order AWE

took 1512 seconds CPU time for filling the matrices including the derivative matrices and

8 seconds CPU time for LU factorization. The 8th order AWE took  3082 seconds CPU time for

filling up the matrices including the derivative matrices and 8 seconds CPU time for LU

factorization. The exact solution took about  613 seconds CPU time to fill the matrix

α 90
o

= θi 90
o

= φi 0
o

=

1cm 1cm 1cm××
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(4291 seconds for 7 frequencies) and 8 seconds CPU time for LU factorization (56 seconds for

7 frequencies).

(c) Sphere

As a third example, a PEC sphere of radius 0.318cm is considered. To demonstrate the

usefulness of AWE over a wide bandwidth, three frequency points are considered at 20 GHz, 30

GHz and 40 GHz to obtain RCS frequency response over the frequency range 15 GHz to 45 GHz.

The sphere is discretized into 248 triangular elements at 20 GHz and 30 GHz and 504 triangular

elements at 40 GHz. The frequency response is plotted in figure 7 along with the exact solution

calculated with 1 GHz frequency interval over the bandwidth. It can be seen that AWE frequency

response agrees well with the exact solution. It can be noted that even the 4th order AWE is

sufficient to obtain the accurate frequency response over the bandwidth. The CPU timings for

matrix fill and LU factorizations are given in Table 1. It can be seen from Table 1 that the exact

solution with a frequency interval of 1 GHz took around 6hours of CPU time to calculate the

frequency response over the frequency bandwidth (15 GHz to 45 GHz), AWE calculation requires

only  1  hour and 22 minutes of CPU time.

Table 1: CPU timings for RCS frequency response calculation of a PEC sphere

Method

Frequency Band (GHz)

15GHz-25GHz
(372 unknowns)

25GHz-35GHz
(372unknowns)

35GHz-45GHz
(756 unknowns)

Matrix Fill
(secs)

LU Factor
(secs)

Matrix Fill
(secs)

LU Factor
(secs)

Matrix Fill
(secs)

LU Factor
(secs)

AWE_MoM
(4th order)

828 3 828 3 3211 25
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Comment on Storage: In all the above examples, when solving a matrix equation, one needs to

store a complex, dense matrix  of size  for exact solution at each frequency. Fornth

order AWE, one needs to storen number of complex, dense matrixes ( , q=1,2,3,...n) of

size , along with the matrix  of size . For electrically large problems, this

could impose a burden on computer resources. This problem can be overcome by storing the

derivative matrices,  out-of-core, as the derivative matrices are required only for

matrix-vector multiplication.

5.0 Concluding Remarks

An implementation of AWE for frequency domain Method of Moments is presented. The

RCS frequency response for different PEC objects such as a square plate, cube, and sphere are

computed and compared with the exact solution. It is also found to be useful to use multi-

frequency expansion points to get wide frequency bandwidth. From the numerical examples

presented in this report, AWE is found to be superior in terms of the CPU time to obtain a

frequency response.  It may also be noted that although calculations are done at one incidence

MoM
(10 Frequency

Points)

3710 30 3710 29 14,220 250

Table 1: CPU timings for RCS frequency response calculation of a PEC sphere

Method

Frequency Band (GHz)

15GHz-25GHz
(372 unknowns)

25GHz-35GHz
(372unknowns)

35GHz-45GHz
(756 unknowns)

Matrix Fill
(secs)

LU Factor
(secs)

Matrix Fill
(secs)

LU Factor
(secs)

Matrix Fill
(secs)

LU Factor
(secs)

Z ko( ) N N×

Z
q( )

ko( )

N N× Z ko( ) N N×

Z
q( )

ko( )
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angle  for all the examples presented, with a nominal cost, the frequency response at multiple

incidence angles can also be calculated. AWE is accurate at and around the frequency of

expansion and the accuracy deteriorates beyond certain bandwidth. The accuracy of AWE over a

desired frequency band and its relation to the order of AWE to be used are topics of interest for

future research. With these topics addressed, AWE will be of good use in computing the

frequency response using a frequency domain technique such as Method of Moments.
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Figure 1 Arbitrarily shaped three dimensional PEC object
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Figure 2 Triangular discretization of the three diemnsional PEC objects. (a) Square plate - As the
normal component of the electric current is zero on the edges, the current coefficients
are set to zero on the edges (b) Sphere.
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Figure 3 The current basis function as defined in equation (7) for the three edges of the triangle.
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Figure 4(a) Square Plate (1cmX1cm)
             (b) RCS frequency response the square plate(1cmX1cm) from 9GHz to 15GHz
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Figure 5 RCS frequency response of the square plate(figure 4(a)) from 25GHz to 35GHz
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Figure 6(a) A PEC cube (1cmX1cmX1cm)
             (b) RCS frequency response of the cube from 9GHz to 15GHz
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Figure 7 RCS frequency response of a sphere (radius=0.318cm) from 15GHz to 45GHz using
three frequency expansion points at 20GHz, 30GHz and 40GHz
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